On distinct distances in homogeneous sets in the Euclidean space
نویسندگان
چکیده
It is shown that a homogeneous set of n points in the d-dimensional Euclidean space determines at least Ω(n2d/(d 2+1)/ log n) distinct distances for a constant c(d) > 0. In three-space, the above general bound is slightly improved and it is shown that a homogeneous set of n points determines at least Ω(n.6091) distinct distances.
منابع مشابه
$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures
Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...
متن کامل$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$
Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...
متن کاملDistinct Distances Between Sets of Points on a Line and a Hyperplane in R
A variant of Erdős’s distinct distances problem considers two sets of points in Euclidean space P1 and P2, both of cardinality n, and asks whether we can find a superlinear bound on the number of distinct distances between all pairs of points with one in P1 and the other in P2. In 2013, Sharir, Sheffer, and Solymosi [8] showed a lower bound of Ω(n) when P1 and P2 are both collinear point sets i...
متن کاملOn the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملFUZZY HV -SUBSTRUCTURES IN A TWO DIMENSIONAL EUCLIDEAN VECTOR SPACE
In this paper, we study fuzzy substructures in connection withHv-structures. The original idea comes from geometry, especially from thetwo dimensional Euclidean vector space. Using parameters, we obtain a largenumber of hyperstructures of the group-like or ring-like types. We connect,also, the mentioned hyperstructures with the theta-operations to obtain morestrict hyperstructures, as Hv-groups...
متن کامل